Learning Structured Information in Natural Language Applications
نویسنده
چکیده
Recent literature on text-tagging reported successful results by applying Maximum Entropy (ME) models. In general, ME taggers rely on carefully selected binary features, which try to capture discriminant information from the training data. This paper introduces a standard setting of binary features, inspired by the literature on named-entity recognition and text chunking, and derives corresponding realvalued features based on smoothed logprobabilities. The resulting ME models have orders of magnitude fewer parameters. Effective use of training data to estimate features and parameters is achieved by integrating a leaving-one-out method into the standard ME training algorithm. Experimental results on two tagging tasks show statistically significant performance gains after augmenting standard binaryfeature models with real-valued features.
منابع مشابه
The Impact of Structured Input-based Tasks on L2 Learners’ Grammar Learning
Abstract Task-based language teaching has received increased attention in second language research. However, the combination of structured input-based approach and task-based language teaching has not been examined in relation to L2 grammar learning. To address this gap, the present study investigated how the structured input-based tasks with and without explicit information impacted learners’ ...
متن کاملThe Impact of Structured Input-based Tasks on L2 Learners’ Grammar Learning
Abstract Task-based language teaching has received increased attention in second language research. However, the combination of structured input-based approach and task-based language teaching has not been examined in relation to L2 grammar learning. To address this gap, the present study investigated how the structured input-based tasks with and without explicit information impacted learners’ ...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملAn Overview of Deep-Structured Learning for Information Processing
In this paper, I will introduce to the APSIPA audience an emerging area of machine learning, deep-structured learning. It refers to a class of machine learning techniques, developed mostly since 2006, where many layers of information processing stages in hierarchical architectures are exploited for pattern classification and for unsupervised feature learning. First, the brief history of deep le...
متن کاملMarkov Logic in Natural Language Processing: Theory, Algorithms, and Applications
Natural languages are characterized by rich relational structures and tight integration with world knowledge. As the field of NLP/CL moves towards more complex and challenging tasks, there has been increasing interest in applying joint inference to leverage such relations and prior knowledge. Recent work in statistical relational learning (a.k.a. structured prediction) has shown that joint infe...
متن کاملInformation Extraction in Medical Domain Using Ontology and Knowledge Graphs
Medical documents contain lots of information which can be useful to build many health related applications. Since medical documents present unstructured information in nonstandard natural language so it is difficult to extract this information and present in a structured manner. We propose a model named "Feature Based Relation Extraction with Relational Learning using Medical Ontology" which m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006